OK,我们来看第二个问题——为什么给一个人展示的是这个广告,而不是其他广告,它涉及的关键词叫竞价。
我们通过一个极其简单的例子来理解竞价——
一个篮子总共有三个红苹果和三个青苹果,这时候有两个人,第一个人只喜欢吃红苹果不喜欢吃青苹果,所以他愿意为一个红苹果出价一块钱,青苹果出价就是0,另一个人正好和他相反。
这时候问题就来了——我们有两种售卖方式,第一种售卖方式:把整个篮子卖给其中的一个人,这时候我们的收入是三块钱。
第二种方式,就是我们能够把红苹果和青苹果分开分别卖给他们,我们的收入就有三块加三块等于六块。
如果我们把广告看成刚刚例子中的苹果,那么通过这个例子,我们可以得出以下的结论:
第一,竞价的前提是人们对不同广告的价值判断其实是不一样的。
第二,互联网的技术能够对不同的广告进行有效的区隔,
OK,我们回到开始的这个问题,为什么你看到的是这个广告而不是其他广告?
大家可以看到课程中的这个示意图,假如广告系统通过数据识别到小明是一名生活在北京25岁,对健身感兴趣的男性。
那么广告是怎么样投放给他的?
广告系统投放其实非常的复杂,但其中有两个关键的步骤:
第一步叫Target,就是匹配,这一步会在全体的广告库中找到符合小明这个定向的广告,比如说图中的A、C、E;
第二步叫Rank,就是竞价排序,这一步,会挑出排在最前面的广告发给小明就是图中的C。
这时候小明就看到了C这个广告。
那么问题来了,广告的竞价排序是如何进行的?
假如现在我们有两个广告主——Nike出价一块钱一个点击、阿迪出价两块钱一个点击,我们总共有100次曝光,我们应该给谁?
很多人会直观的说,那当然得给阿迪,它出价高啊!
但如果我们考虑到点击率,结果就会大不一样,假如耐克的点击率是5%,100次曝光就会产生五个点击一块钱一个点击收入是五块钱。
而这时候如果阿迪的点击率是1%,那么100次曝光就会产生一个点击,两块钱一个点击收入是两块。
所以两块对五块,我们应该给耐克,不是阿迪,因为它的综合收益更高。
我们不要看这个案例非常简单,但他揭示按效果付费竞价广告的几个最重要的法则。
第一,广告平台关心自己流量的总收益;
第二,广告主通常按效果进行出价,比如说这次就是按单次的点击进行竞价;
第三,广告平台需要把点击出价转化成它的收益去进行排序;
第四,CTR也就是点击率就架起从点击到收益的一座桥梁,未排序去提供基础。
所以,在竞价广告中,点击率就是一个极其关键的指标。
那么问题就来了——点击率它是一个结果指标,就是我们投放完之后,我们可以去统计这个点击率,没有投放之前,我们其实是不知道的,而每一次投放都需要排序。
那么点击率这个数据应该怎么算?
很多人就想到一个方法——“尝试投放一下”
那么“尝试投放一下”这种方法是不是行得通呢?
答案是行不通,为什么行不通呢?我们接着往下看——
我们依然通过一个简单的例子来说明:
假如现在有四个广告主——分别是卖高跟鞋、卖买西装、卖布娃娃和卖游戏机的,他们的出价都是一块钱一个点击。
假如整个平台上有4000个用户,
按照刚刚的说法,我们开始不知道每一个广告主的点击率,所以我们可以试投一下,比如说每个广告主我们都是投100个,结果我们发现投放之后,它们每一个的点击率都是25%,一模一样,这时候排序就变得很困难。
于是,我们只能公平的随机去进行投放,这个时候我们的点击数是4000,乘以点击率25%等于1000,我们的总收益是1000个,点击乘以一块钱,总的就是1000块钱。
但是,如果我们知道这4000个用户的特征,我们就不会这样去预估点击率。
那么真相是什么?
真相就是这4000个用户,其实可以根据年龄和性别分成四类——分别是成熟男人、成熟女人、小男孩和小女孩,每一个分类都是1000个,他们每个人对自己喜欢的物品的点击率是100%,不喜欢的物品的点击率是0%,
比如说小男孩一定会点游戏机,一定不会点其他的,而成熟女人一定会点高跟鞋,也一定不会点其他的商品。
所以这时候我们正确的预估应该是——当一个小男孩来访问的时候,我们就能精确的预估到他对游戏机这个广告的点击率是100%,而其他人的点击率这时候是0%,
这样预估的话,所有人的点击率就都是100%,这时候点击数就会变成4000,整个收益也会变成4000,比刚刚的1000翻四倍。
上面的例子告诉我们,我们要根据广告特征和用户特征来实时的预估点击率。
那么点击率需要哪些特征来预估,或者说点击率都和什么因素相关?
主要有三个方面会影响点击率——广告侧、用户侧和平台侧。
广告侧很容易理解广告主的行业广告,文案、广告、图片和广告的形式都会影响点击率。
而用户侧我们刚刚说的年龄、性别、地域、手机兴趣以及它的使用环境等等。
然后平台侧就是平台的频次控制时间、竞价策略和流量分配策略都会影响点击率。
点击率的预估其实是一个非常复杂的过程,它是互联网广告最核心的技术之一。
我们可以把点击率预估简化成两个步骤,第一步叫特征工程,第二步叫模型训练。
特征工程就是找到很多跟点击率相关的特征,通过模型训练我们就能够得出特定的点击率。
从这个意义上说,点击率预估其实是一个黑盒子,输入很多特征就能实时的输出预估的点击率。
点击率的预估应用非常的广泛,我们今天熟悉的今日头条、抖音的推荐系统的核心技术也是点击率的预估,平时咱们观察到的是——看过什么就给我推荐什么,非常的精准。
这背后其实是把所有可能投放给你的内容的点击率都进行一次预估,然后把点击率最高的推送给你。
广告比推荐排序会多一个步骤,推荐只需要知道谁排在前面就OK,而广告需要知道具体的数值,因为它需要和出价一起来综合排序。
理解点击率预估对广告排序的意义,我们就能够破除一个按效果付费的理解误区:
有人说按点击和成交去进行付费简直太爽,不点不要钱简直没风险!
那我能不能我出一分钱一个点击,同时我还没有时间去好好做广告素材,然后我还要点击一天给我来一百万个?
事实上是不会有这样的好事,你出一分钱一个点击,广告平台如果产生点击,它的确只扣你一分钱,不产生点击的确也不会扣你的钱。
但是最可能的结果就是你出价太低或者你的点击率太低,你被排在后面根本投放不出去,所以的确没有风险,但同样也没有收益。
OK,对这一小节做一个总结:如何通过竞价来提升广告投放的效率,按效果付费,的确是一个对广告组友好的计费方式,但是他也是一个公平的计费方式,想要获得更多的点击只有两个办法:
第一,提升出价,当然出价通常要考虑到自己的承受范围;
第二,我们提升我们的点击率和转化率,不断的优化自己的广告素材广告定向和广告投放的数据。